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ABSTRACT: The confluence of computational and biophysical methods to accurately rank-order the binding affinities of small
molecules and determine structures of macromolecular complexes is a potentially transformative advance in the work flow of
drug discovery. This viewpoint explores the impact that advanced computational methods may have on the efficacy of small
molecule drug discovery and optimization, particularly with respect to emerging fragment-based methods.

The ability to affinity rank-order small molecules against a
drug target is, arguably, the ne plus ultra of structure-

based drug discovery (SBDD). However, there are numerous
caveats that impede the facile application of the current existing
toolbox of approaches toward achieving this goal. It has been
well established that docking scoring functions, while often
performing well at determining binding poses of ligand to
protein targets, are not adequate for determining relative
binding affinities of a library of compounds.1 This is not
surprising, given the many assumptions that go into a classical
in silico screening campaign. Usually the goal of such
campaigns is the parsing of binders from nonbinders. However,
affinity rank-ordering is the realm of atomistic, physics-based
computational approaches that often employ molecular
dynamics (MD) sampling methods, which are relatively
intensive and thus most amenable to studies utilizing 10s or
100s of compounds. Furthermore, the efficacy of such
approaches often synergizes with the quality of the biophysical
data on the macromolecular target. The purpose of this
viewpoint is not to review or compare the many methods that
are able to reasonably achieve protein−ligand affinity rank-
ordering, but to bring attention to the fact that such
computational and biophysical methods are becoming a vital,
yet often overlooked, component in modern methods for
inhibitory scaffold discovery and optimization.
Before accepting it on faith that this would truly be a worthy

achievement for medicinal chemistry, let us examine what a
satisfactory solution to this problem would look like, and why it
would have a profound effect on the modern drug discovery
work flow. Shirts et al.2 have astutely quantified the premium to
the medicinal chemist due to accurate affinity predictions of
small molecules binding to protein-targets, which was based on
the largely normal distribution observed for a large (>80 000)
sampling of the additions of chemical substituents to lead
compounds, across 30 different protein targets at Abbott
laboratories.3 The implication of this distribution is that only
8.5% of the transformations in the various optimization
campaigns lead to affinity changes greater than 1.4 kcal/mol
(∼1 pKi unit) and 1% at values of 2.8 kcal/mol. Shirts et al.
then demonstrated that computational affinity rank-ordering
with standard error values of 1.0 and 0.5 kcal/mol would
provide 36% and 50% chances, respectively, of obtaining a 1.4

kcal/mol enhancement in affinity.2 Achieving affinity rank-
ordering at the <1 kcal/mol accuracy level requires an array of
computational methods that are not currently available as
turnkey implementations but nevertheless are routinely
accomplished. In the final analysis, the real benefit of accurate
affinity rank-ordering will be manifested in the resource and
time commitment that it takes to surmount the <1 kcal/mol
threshold across a range of drug targets.
However, there’s more to this story than simply the efficiency

with which one obtains enhancements in binding free energy,
this is particularly true when considering the increasing success
and advantages of employing fragment-based drug discovery
(FBDD) campaigns, as opposed to the classical optimizations
that are at the heart of the statistical analyses outlined above.
Fragment-based approaches to drug discovery have been
successful in obtaining lead compounds, often against highly
intractable targets, which are optimized to have excellent drug-
like properties.4,5 FBDD is a generic term for a family of
strategies that seek to optimize initial hits from low molecular
weight compounds, which initially have weak potencies but
high ligand efficiencies (LE, binding energy/non-hydrogen
atom). FBDD is a more efficient search of chemical space than
high-throughput screening (HTS; which employs medium-
sized compounds of greater complexity) because larger portions
of potential chemical space may be readily searched.5 The
caveat here is, of course, that the very weak binding must be
detectable and amenable to characterization.
Structural biology, biophysical methods, and computational

chemistry often play central roles in FBDD. FBDD is quite
different from classical HTS (and in silico screening of medium
sized molecules) in a number of ways, perhaps most
importantly in its reliance on iterative cycles of rationally
incrementing the potency of the initial (weak) fragment hit
while maintaining or improving a host of drug-like descriptors
(e.g., high LE, low clogP, high LiPE, etc.). Although the
successes of FBDD are too numerous to list, the field reached a
milestone with the FDA approval of Vemurafenib (Zelboraf),
which was developed using these approaches.
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Although in silico docking is a relatively standard method
used in many FBDD work flows, its utility is limited to
fragment placement since affinity rank-ordering is not within
the realm of docking scoring functions. However, the use of
physics-based methods for calculation of the affinity of
fragments and their derivatives during optimization has
received far less attention than for simple docking. Indeed,
this is the area where in silico methods may have the most
impact on drug design and discovery. A highly generalized and
hypothetical work flow for rational structure-based discovery
and lead optimization (which may or may not employ FBDD)
is shown in Figure 1, which envisions the nexus between

computational affinity rank-ordering (blue section), compound
testing, and optimization (green and yellow sections,
respectively), which may include a number of approaches
such as linking fragments, growing derivative libraries, or
bioisostere hopping. The value-added benefit of employing
MD-based sampling to achieve affinity rank ordering in the
work flow shown in Figure 1 is manifold. First, the same
statistical analysis presented above for enriching binders, given
a reasonable accuracy (∼0.5−1 kcal/mol), would be especially
valuable in the optimization of a fragment hit since different
fragment hits will yield diverse derivative libraries with distinct
distributions of affinities. A key caveat of the linking and
growing strategies used in FBDD is knowing how the protein
changes shape in the complex. Indeed, the use of MD-based
sampling methods to determine accurate affinity rank-ordering
has the capacity to not only determine what fragment to use for
optimizing LE, but information on how the target protein
structurally and dynamically responds to a particular growing or
linking strategy. A leading FBDD group recently indicated that
fragment binding events often trigger conformational changes
in the target protein and even the formation of new pockets.4

A prime example of the need for conformational sampling to
achieve relative binding affinities with a set of noncongeneric
small molecule inhibitors is the case of glutamate racemase, an
antibacterial target, where high-resolution structural data is
necessary but not sufficient for accurate affinity prediction.6,7

The use of advanced MD approaches for sampling large
structural changes in the ensemble (i.e., beyond local thermal
fluctuations) was instrumental in achieving useful affinity rank-
ordering in the glutamate racemase system,6 which was also
employed in a successful optimization campaign, using a similar
strategy as that outlined in Figure 1.7 The key to effectively

using the extant structural information on glutamate racemase
is the recognition that major structural alterations exist and
happen to be critical in the enzyme’s natural catalytic cycle.
Furthermore, one of the most complicated features of such a
system is that subtle differences in the structures of the small
molecule lead compounds either capture or induce significant
changes in the protein target, in an idiosyncratic fashion.
Nevertheless, these problems are soluble with either exhaustive
conformational sampling, or as in the case of glutamate
racemase, a solution may be found from employing the right
combination of MD simulations and docking.6

Another major issue to emerge in surmounting the
challenges presented by flexible systems such as glutamate
racemase is dealing with nonobvious changes in solvation that
arise from large structural alterations in the protein target
ensemble. These may be reflected in the changes in the protein
solvation energy itself or even more problematic, ligand-
dependent changes in the local water structure in the small
molecule’s binding pocket. There is an increasingly voluminous
body of experimental and computational research that supports
a highly idiosyncratic ligand-dependent change in water
structure, especially in deep enzyme active sites. Nonobvious
changes in the water structure and the implications on small
molecule affinity rank-ordering is an area where computational
approaches offer tangible benefits. For example, the seminal
MD study by Helms and Wade established that a crystallo-
graphic water in a complex of cytochrome P450cam with an
inhibitor (2-phenyl-imidazole), which mediates hydrogen-
bonding between protein and ligand, provides −11.6 ± 6.6
kJ/mol of stabilization energy.8 Alternatively, the complex of
the natural substrate, camphor, whose crystal structure does not
show a water in this cavity, is solvated with a penalty of +15.8 ±
5 kJ/mol.8 Recent experimental studies, employing high-
resolution X-ray crystallography, on a series of complexes of
tRNA-guanine transglycosylase with lin-benzoguanines and lin-
benzohypoxanthines revealed the presence of a water cluster in
the active site, whose specific structure was strongly tied to the
observed inhibition constants for this series.9 A similar
idiosyncratic importation of water clusters has now been
documented for glutamate racemase, where experimental and
computational work indicated a wide range of ligand-specific
water-mediated contacts in a buried polar active site.10

MD-based sampling and experimental biophysical methods
are being employed in increasingly synergistic ways to benefit
SBDD, but the full potential will be only be realized when and
if these methods are more routinely integrated into drug
discovery work flows. Accurate and meaningful protein−ligand
rank-ordering has undeniable benefits to the medicinal chemist,
as outlined above, and can only be achieved across a range of
target classes using methods that are significantly more
intensive than standard scoring functions but well within
reach of many research groups today.
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Figure 1. Flowchart for a biophysically driven drug discovery cycle.
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